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On the Expansion of Linear Response Functions-- 
Application to Electrical Conductivity 
of Disordered Metals 
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Two expansions for linear response functions which are based on different 
time-ordering prescriptions are presented. The expansions are associated with 
the derivation of reduced equations of motion (REM) which are nonlocal and 
local in time, respectively. Both expansions are formally exact and are written in 
a closed form but they may yield very different results once approximations are 
made. Therefore they are expected to be useful for different statistical properties 
of the system. The time-local expansion has certain formal advantages over the 
nonlocal one, which makes it applicable to a wide class of problems. In the 
weak-coupling Markovian limit the two expansions are identical. Application is 
made to disordered metals where explicit expressions are derived for the electri- 
cal conductivity using both reduction schemes. 

KEY WORDS: Linear response; transport; disordered metals; electrical 
conductivity. 

1. INTRODUCTION 

The theory of linear response enables us to calculate the effect of a weak 
external driving field on a macroscopic system and is one of the basic tools 
of nonequilibrium statistical mechanics. (1-5) It is widely used for the 
microscopic calculation of transport coefficients. A few examples are the 
hydrodynamic transport coefficients, electrical conductivity, light scattering 
cross sections, absorption line shapes, etc. The linear response formalism 
requires the microscopic evaluation of correlation functions corresponding 
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to the external perturbation and to the detection process associated with the 
desired transport coefficient. The exact evaluation of the latter is equivalent 
to finding the true eigenstates of the unperturbed system. This is a formida- 
ble task and is feasible only for few, extremely simple, microscopic models 
(e.g., ideal gases, harmonic lattices etc.). For this reason there were devel- 
oped various methods for the approximate calculation of equilibrium 
correlation functions and linear-response functions. These include, e.g., 
Monte Carlo methods, Langevin equations, Master equations, and projec- 
tion operator techniques. A common method involves the derivation of 
reduced equations of motion (REM) for the necessary correlation func- 
tions. It is our purpose in this paper to present and compare two methods 
for the calculation of correlation functions, which are based on the deriva- 
tion of REM making use of different time-ordering prescriptions. The first, 
denoted COP (chronological ordering prescription), is the more common 
and results in REM which are nonlocal in time (integral equations). (6~ The 
second, denoted POP (partial ordering prescription), was developed re- 
cently (7-t2) and the resulting REM are local in time. Recent applications of 
the POP equations to molecular radiative processes and line shape prob- 
lems have proven very usefulfi -1~ In Section 2 we present the COP and 
POP REM for the evaluation of correlation functions. In Section 3 we 
summarize the linear response formalism and develop the COP and the 
POP expansions for the response functions. In Section 4 we specialize the 
formalism to a single conserved variable, and finally in Section 5 we 
consider a simple model of a disordered metal and calculate the electrical 
conductivity using both methods. 

2. EVALUATION OF CORRELATION FUNCTIONS USING THE COP 
AND THE POP REDUCED EQUATIONS OF MOTION 

Within the framework of nonequilibrium statistical mechanics, the 
microscopic information relevant for macroscopic observables such as 
transport coefficients is usually put in the form of appropriate correlation 
functions. Given two dynamical operators A~ and A t we define their 
correlation function as 

C~('c) -~ Tr[exp(iH'r)A~exp(- iH'c)A~f] =-- Tr[At~('r)A~f] (1) 

Here H is the total Hamiltonian of the system and f = f ( H )  is the 
equilibrium distribution function which is a function of H and therefore 
commutes with it, [H, f] = 0. 

The rigorous evaluation of the correlation functions (1) requires the 
knowledge of the exact eigenstates [a) of H and their eigenvalues E~, in 
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terms of which we have 

C.,(r) = Z f(a)(A]).e(A,), ,  exp(i%Br) 

where 

and 

(2) 

%~ = G - EB (4)  

Equation (2) does not usually provide a practical way for the evaluation of 
correlation functions. The reason is that we seldom know the true eigen- 
states of a complicated many-body system. Moreover, the information 
content of the true eigenstates is often much larger than required for the 
knowledge of the correlation functions in the desired accuracy dictated by 
experiment. We should thus adopt appropriate approximation schemes for 
the evaluation of the correlation functions (1). To that end let us introduce 
a Liouville space (tetradic) notation which simplifies our subsequent formal 
manipulations. In Liouville space, an ordinary operator A, is a vector and 
we define a ket vector [A~)) corresponding to A~. Similarly to A~ we assign 
a bra ((A~]. The scalar product of two vectors is defined as 

S.~ -~ ((A. I A~)) =-- Tr(At~A~I) (5) 

A tetradic (Liouville space) operator is defined by its action on a set of 
ordinary operators. 

$-A~ = A, (6) 

and we define a tetradic "matrix element" 

(~-)~ --= ((d~] ~-IA~)) --= Tr(A~GSA,f) (7) 

If (A~} is a complete set of operators, then the unit operator in Liouville 
space has the form 

I = ~, IA.))S~S'((A.I (8) 
/J 

If the set of operators {A.) is orthonormal then 

S~ = 3.,~ (9a) 

and we have 

I = ~ IA.))((A.I (9b) 
p 

f =  ~ I@f(a)(al (3) 
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Using the matrix notation introduced by Eqs. (6)-(8) we may write any 
tetradic operator 5- in the following matrix form: 

~,'/,( 

When the sum in Eq. (8) is restricted to a finite set of operators A~ 
p = 1 . . . . .  N which do not span the entire phase space, we get a Mori 
projection onto the subspace defined by these operators, i.e., 

N 

e ~ ~ IA.))S~S~((A.t (11) 
p , ~ =  1 

Equations (6)-(11) are direct analogs of ordinary (Hilbert space) formal- 
ism; the only difference is the definition of the scalar product [Eq. (5)]. The 
Liouville operator (Liouvillian) L is the tetradic operator corresponding to 
the Hamiltonian H, i.e., 

LA, =-[ H,A,] (12) 

We may then write 

A,Q') = exp( iH'r)A, e x p ( -  iHT) =-- exp( iL~r)A, (13) 

and using our vector notation: 

[A,(~-))) = exp( iL~c)lA ) ) (14a) 

((A,(~')I = ((A,[ exp( - iL.c) (14b) 

we have 

C~(~-) = ((A,(~-) [ A~(0))) -- ( (A , [exp( -  iL~)IA~) ) (15) 

We shall now turn to discuss practical ways for the evaluation of the 
correlation functions C,~(~-), using the tetradic notation introduced in Eqs. 
(5)-(14). A straightforward perturbative approach involves the partitioning 
of H in the form 

H = H 0 + H '  (16) 

and correspondingly in Liouville space we have 

L = L o + L' (17) 

Using Eq. (17) we have the following iterative relations: 

exp ( -  iLt) = e x p ( -  iLot ) - i fo' d.c expI - iLo( t - .;) ] L' e x p ( -  iL'r) (18) 

1 
f = fo + _ Lo + ie L ' f  (19) 
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where f0 = fo(Ho) is the distribution function corresponding to H 0. Equa- 
tions (18) and (19) may be used to generate a perturbative series for C~0-) 
as a power series in L'. This is done by substituting these equations in Eq. 
(15). Perturbative series of this type are usually valid for short times but 
they fail completely at long times owing to the accumulation of errors. It is 
therefore desirable to find resummation techniques which will yield expres- 
sions for Q~(~-) which are nonperturbative in L'. A commonly used 
resummation technique involves the derivation of reduced equations of 
motion (REM) for the correlation functions. The kernels appearing in the 
REM are then evaluated perturbatively but when solving the REM for 
C.,0-) the solution will be to infinite order. This corresponds to a partial 
resummation of the perturbative series for C~(~-). We shall focus here on 
two types of REM denoted COP (chronological time ordering prescription) 
and POP (partial time ordering prescription). The COP equations are 
derived in Appendix A and they read (in a matrix form) 

dC(t)_ i(s ) (20a) 
dt 

or, more explicitly, 

dGAt) 
dt 

The ( s  and (K) matrices are defined as follows: 

( s  = ( L ) ( S ) - '  

where 

and 

(K(~)) = ( W 0 " ) ) ( S ) - '  

(L)u, = ((A~ILIA~}> 

<S>., = ((A. l&)> 

(20b) 

(21) 

(22) 

(23a) 

(23b) 

(W(~))~ = ( (AulLQ exp(- iQLr QLIA~) ) (24) 

Here P is the projection operator Eq. (1 l) and 

Q -- 1 - P (25) 

The POP equations of motion are derived in Appendix B, and they 
read (using matrix notation) 

dC(t) 
- i(f]~G(t) -fotd~ (g?('r)). C(t) (26a) dt 
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or, more explicitly, 

~ - • i ( a > . x C x , ( t  ) - (q~('c)>.xdr (26b) 
A 

Here the ( s  matrix is given by Eq. (21) and 

d (27) 

or, alternatively, 

<(~/)(q')> = -- (S( " f )>  <S( ' r )> -1 ....1_ <S(,./.)> ( S i r ) >  - 1 (S (T )>  <S('T)> --1 (28) 

where a dot denotes derivative with respect to time and we have 

(S(r  = <<A.[exp(-iL~)IA.> > (29) 

(S(~-)) ,~ = - i<<A~[ Z exp( - iZ'r)lA~> ) (30) 

and 

(S(~-) ) ,, = - <<A, ]L exp( - iLr)L]Ag>> (31) 

Equations (20) or (26) are convenient starting points for the approximate 
evaluation of the correlation functions C~(r The way to proceed is now to 
evaluate ( s  and (K> for the COP or ( s  and (q,> for the POP perturba- 
tively. A low-order perturbative expansion of these quantities in some 
parameter will result in an infinite-order approximation for C,~(~-), which 
corresponds to a partial resummation. The nature of the perturbative 
expansion depends in general on A, and on the Hamiltonian H. If we use 
the partitioning [Eq. (17)] for L, where L 0 is a solvable zero-order Liouville 
operator and L' is a perturbation, then the POP kernel (4~(~)> [Eq. (28)] 
may be expanded using Eqs. (18) and (19). The evaluation of the COP 
kernel (K(z)> [Eq. (22)1 requires the expansion of e x p ( -  iQL'r). This is less 
straightforward than the expansion of exp ( - iLz )  [Eq. (18)]. In the common 
case where 

LoA ,, = 0 

so that 

(32) 

(33) LoP = 0 

we may write 

e x p ( -  iOL.r) = e x p ( -  iLo~ - iQL%) 

= exp(-iLo.c ) - ifo~ d'l" 1 e x p [ -  iLo('r - ~,)] 

• QL' exp( - iQLz) (34) 

Equations (19) and (34) are then used to evaluate the (K(.r)) matrix. 
perturbatively in L'. The above discussion shows already one formal 
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advantage of the POP equations. Namely, the expansion of exp(-iL'r) 
is easier and leaves us with more flexibility than the expansion of 
exp( -  iQLz). (s-l~ 

3. THE EXPANSION OF LINEAR-RESPONSE FUNCTIONS 

In this section we shall introduce the necessary notation for the 
definition of the linear-response functions and present their expansions 
using the COP and the POP reduction schemes. 

We consider a complicated system with many degrees of freedom, 
characterized by a Hamiltonian H and subject to an external driving force 
F(r, t). The total Hamiltonian for the driven system is 

n T = H - I -  n I ( 3 5 )  

where 

HI = - f dr B(r)F(r, t) (36) 

B(r) is a dynamical variable which depends on the degrees of freedom of 
our system and which denotes its coupling with the external field. For a 
fluid consisting of many identical molecules we have 

B(r) = ~,, �89 [ Bm,6(r -  rm)]+ (37) 
m 

where 

[ A , B ]  + - -  + BA (38)  

and the summation is over the single molecule operators B m. 
If we measure the expectation value of an operator A (r) which is again 

of the form 

A (r) = ~ �89 [Am, d ( r -  rm) ] + (39) 
m 

Then, to lowest order in the field F we have 

(A(r , t ) )  = f t o  d'c f dr'q, AB(r-  r ' , t -  "Or(r',~ ) (40) 

o r  

where 

(A (r, t)) = Z XAB (k, w)F~exp [ - i ( k r  - wt)] 
k,co 

(41) 

F(r, t) = ~ Fk,oexp [ -- i(kr - cot)] (42) 
k~ 

XA~ (k, o~) = f0~ d'r fdrrbAB(r,'r)exp[i(kr-oxr)] (43) 
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~AB or )(AS are the response functions denoting the effect of driving with B 
on the expectation value of the operator A. The linear-response formalism 
gives a microscopic expression for these quantities. (' 5) Before writing it 
explicitly, we shall first introduce some notation. We define the advanced 
and retarded Green's functions G + and G -,  respectively: 

G -+ (r --= 0(r -T- iL~) (44) 

where 00-) is the Heaviside step function. In the frequency domain we 
define 

+ 1 (45) 
G - ( ~ ) -  o ~ - L 4 - i e  

we then have 

and 

G + (r = - ifo~ d~" G + (~')exp(i~oT) (46a) 

(37)], i.e., 

so that 

Ak = 2 �89 [ Am'exp(ikrm) ]+ (48a) 
m 

B k = ~ �89 Bm,exp(ikrm)]+ (48b) 
m 

A~(I-) = A _k(r)  (49) 

Finally we define the matrix elements of the Green's functions 

(G~(k ,T ) )  -- ((A_k[G + (~)[B_k))  -- Tr[AKG + ( l")B_kf  ] (50a) 

( G ~  ( -  k, ~')) = ((BkIG - (~')lAk)) ~ Tr[B_kG - (r ] (50b) 

Similarly, in the frequency domain we have 

( G~B(k,r =-- ((A_~IG + (r = Tr[AkG + (r (51a) 

( G ~ ( - k ,  -r =-- ( (BkIG- (--r = Tr[ B_kG-  (--r (51b) 

G - ( - o0) = iJ0~" dT G - (~-)exp(i~r) (46b) 

Using Eqs. (15) and (44)-(46) we have 

C~(~') = ((A~(~) [ A~(0))) = ((A~IG + (~-)]A~)) (47a) 

and 

C ~ ( -  ~) = ( (A~( -  r) I A~(0))) -- ((A=(0) I A~(r))> = ( ( A = I G  - (r 

(47b) 

We next introduce the Fourier transforms of A (r) [Eq. (39)] and B(r) [Eq. 
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The linear response formalism results in the following microscopic expres- 
sion for the response functions (1-5) : 

(k, w) = if0~176 d~- X4B (k, z)exp(i~0~-) (52) XAB 

where 

XA, , ( k , ' o )  = -- ( C ; , , ( k , , , , ) )  - (52a)  

and where 

X.4B(k,r = ( G~+B(k,~')) - ( G~ ( -  k,~')) (52b) 

The evaluation of the linear response functions thus reduces to 
the calculation of the equilibrium correlation functions [Eqs. (50)]. The cor- 
relation functions ( G ~ ( k ,  ~-)) may be directly obtained by solving' the 
REM (20) or (26) where C~(r is replaced by (G~-B(k,~)). The retarded 
Green's functions ( G ~  ( -  k, T)) may be obtained from similar REM where 
- i(s exp(-  iQL.c), and exp(-  iL'r) are replaced by i(s exp(iQL.r) and 
exp(iL~-), respectively. The appropriate (COP or POP) REM are defined by 
introducing the projection operators P and Q defined as follows: 

P = ~ [A.k))S,.;I((A~,~I (53a) 
P 

O = 1 - P (53b) 

The set of operators {A.k} has to include our relevant A and B operators. 
In addition it may include also other operators whose time evolution is 
correlated with that of our A and B. The solution of the COP equations 
[Eqs. (20)] is most easily carried out using a Laplace transform, resulting in 

(G~;(k ,~))=~x [ to- (R+-(k ,o~))]~l (s (k) )x .  (54) 

where 

(R-+ (k,o~)) = ( e ( k ) )  + (K• (k,~0)) (55a) 

( s  = (L(k)) (S(k))  - '  (55b) 

(K +- (k,~))  = (W(k ,e ) ) (S (k ) ) - '  (55c) 

(L(k) )~  = ((A.,_k]LIA~,,_k)) (55d) 

(S(k))p. = ((A.,_ k [ A~,,_k) ) (55e) 

1 QL[A._~)) (55f) (W -+ (k, to))~ = ((A~_k[L o co - QLQ +_ ie 

The formal solution of the POP equations (26) is also straightforward 
and reads 

(G,.;(k,+__w))= -T-ifo~ d'cexp(ito.r)(G~;(k,.r)) (56a) 
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where 

Here 

(G~,~(k,T))t,l=2exp+[--ifordTl(~+-(k,'T,))]~ ~,~(S(k))x~ ( 5 6 b )  

and 

@+-(k,.O).x=(a(k))a-ifo'd.q(,~+-(k,~-,))a (57a) 
d ( , -+ ( k , , ) ) ,  - (57b) 

( S -+ (k, z))x, x = ((Ax,,-kl exp( -T- iL'r) lAx, ,_k)  ) (57c) 

(S+- (k,~-))~x, = r iZ,r)lMX,_k) ) (57d) 

(57e) ( S ( k ) }  = ( S ( k , t  = 0 ) )  

exp+ [-ifo" d'rl A (T1) ] 

-- 1 -- i fo~ d*]A('r])  
�9 2 "r "t-(--l) ~0 d'rl fo~'dq'2A('rl)A('r2)+ "'" ( 5 8 )  

is the positive time-ordered exponential. Equations (54) with (55) or (56) 
with (57) when substituted in Eqs. (52) provide us with the COP and the 
POP representations for the linear response functions, respectively. 

4. APPLICATION TO A SINGLE CONSERVED VARIABLE 

Suppose that the variable B corresponds to a conserved molecular 
property such as energy, momentum, or number density; then it obeys the 
continuity equation 

= iLB = - V .  J (59) 

where J is the current associated with the quantity B. In k space this yields 

Bk = iLBk = ikJI, (60) 

Often the observable A k is simply equal to Jk, i.e., we observe the current 
associated with B. In this case we may use the relations of Appendix C to 
write (XsB(k ,  o~)) in terms of a single variable which may be chosen to be 
either B or J. XjB(k,~o) may then be related to X~(k,o~) or to Xsj(k,o~), 
respectively: 

_ ~0 (k,  ~o) (61) X.t~ (k,  ~0) = ~ XB8 

k [XsJ (k, ~o) - Xjj (k, 0)] (62) Xj~ (k, ~o) = - 
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Equations (61) or (62) may now be used for the evaluation of X:~(k,o~) 
using one reduced equation of motion for a single variable ([Bk)) or [J~)), 
respectively). 

A better method for the evaluation of XJs which exploits more 
effectively the symmetry properties of the response functions may be 
derived as follows: Using Eq. (52b) we have 

X.m (k, r = ~,~# f (a ) [  (J~)~#(B~ )/~ exp( i~%# ~-) 

--(B_k)c4~(Jt_k)# exp(--i~%yr)] (63) 

where ta), I t )  are the eigenstates of H [Eq. (35)]. From Eq. (60) we get 

(Bg )#~ = ~ (Jk )#~ (64) 
6OBa 

Upon substitution of Eq. (64) in (63) and changing the a and fl indexes in 
the second term, we finally get 

Xjs(k,'r) = k ~  f(a) - f ( f l )  [(jk),~#12exp(iw,~yr) (65) 
a , B  r176 

We note that Xje(k,~-) is real and satisfies 

X j8 (k, ~) = Xj, ( - k, - ~') (66) 

It is therefore advantageous to exploit this symmetry and to derive REM 
which will give XjB (k, ~-) directly rather than in the form of a difference of 
two correlation functions [Eqs. (52)]. To that end we define a new type of 
scalar product in Liouville space, as follows: 

_Tr (A tF  B ) =  ~ f (a)- f( f l )  A~/~Bt~ (67) ((A IB>>,---- 
\ l--" ] a : t~ 

where 

and 

F = [ f, ] (68a) 

L ------[ H, ] (68b) 

It is easy to verify that the definition (67) satisfies all the requirements of a 
scalar product, i.e., 

(a) ((A ]B))* -- ((B]A>) s (69a) 

(b) if [B>) = e 1 [B1) ) + c21B2> ) 
then ((A [B) )  s = c.((A [Bl)>, + c2((A I B2)), (69b) 

(c) ((A IA)> ,/> 0 and the equality sign holds only when ]A)>--0. 
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This holds at least for all distribution functions f(a) which are monotonic, 
i.e., if ~0B~ > 0 then fB < f~" The scalar product (67) may be alternatively 
written using the Laplace transform: 

f (H)  = 1 fo ~ d ~ e x p ( - ~ H ) f  (x) (70) 

so that 

1 oo 
F- - I f ,  ] = Z f o  dT~f(?~)[exp(-XH), ] (71) 

Here Z is a normalization factor. We now have 

( F B ) ~ , = l  fo~176 ' 
6o Ba 

_ 1 (md)t(hdXlf(X)exp(_X,EB)BB,~exp[_(2t_~.l)E~] 
Zao ao 

(72) 
Upon substitution of Eq. (72) in (67) we get 

1 oo 

• { T r e x p [ -  (2~- X,)H]Atexp(-•IH)B ) (73) 

In the special case of a canonical distribution function we have 

f(X) = d(?t - X0) (74) 

where X0 = 1/kT, Z('ro) is the partition function and we get 

((AtB))---~ l fooX~ (75) Z- o) 
which is nothing but the Kubo transform, (0 which is often used in the 
calculation of transport coefficients. Using our new definition of a scalar 
product (67) or (73), we may express our response function (65) in the form 

XJB ( k, "r) = k((Jk('r ) ] Jk(O)))s (76) 

Using this scalar product, we may use the formalism of Section 3 with 

P = IJD)((Jkl  (77) 

and obtain the following expressions for the transport coefficients: Using 
the COP formalism we get 

XJn (k, ~o) = - k 1 ((Jk(0) I (78) 
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and when using the POP equations we obtain 

Xs8 (k ,r  all- exp(iw~-)exp[ - f0" d'r, (~"- ~',)(~jj (k, ' r ) ) , ]  

X ((Jk(O)[Jk(O)))s (79) 

where (R)~ and (~b), are given by Eqs. (55) and (57), respectively, with the 
projection operator (77) and the scalar product (67). We should reiterate 
that both expansions (78) and (79) are exact provided the necessary kernels 
are evaluated to infinite order, but they may yield different results once the 
kernels are evaluated in an approximate manner. The choice of the appro- 
priate expansion thus depends on the specific problem at hand. (8-t~ 

5, ELECTRICAL CONDUCTIV ITY OF A DISORDERED METAL 

We shall now apply the results of Section 4 to the problem of the 
electrical conductivity of a disordered metal. This problem is of consider- 
able current interest. (~3-~7) In particular questions such as the nature of the 
electronic motion in these systems (coherent or diffusive), the existence of a 
mobility edge (the Mott-Anderson transition), and the effect of dimension- 
ality on these properties are now under active study. The problem was 
attacked by a variety of methods. We shall therefore use this example in 
order to demonstrate how the COP and the POP expansions may be used 
for the explicit evaluation of transport coefficients. 

We consider a disordered metal whose conduction electrons are mov- 
ing in the tight-binding Hamiltonian 

H = Ho + M-/' 

where 

and 

(80) 

H o = ~ V.mc2C m (80a) 
n,m 

H"= 2 Unc~nCn (80b) 
n 

Here c2 (e.) are the creation (anihilation) operators for an electron in the 
nth lattice site, V.m is the exchange interaction, and U. is the electron 
energy at the nth site. We assume that V.m are fixed and translationally 
invariant (i.e., Vnm depend only on I n -  ml). Un on the other hand are 
stochastic random variables characterized by the set of moments (13) 

m (b = ( U,, ) = 0 (81a) 

m(2)(n) = ( UoU . ) (81b) 

m(3)(n,n ') = ( UoU n On, ) (Slc) 
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where ( �9 �9 �9 ) denotes an ensemble average over the stochastic variable U. 
X is a perturbation parameter introduced for bookkeeping purposes and at 
the end of the calculation we may set X = 1. In k space, the Hamiltonian 
(80) assumes the form (18-2~ 

H o = ~ c(k)C~kCK (82a) 
k 

H' = ~_, ( k I UIk')CtkC'k (82b) 
kk '  

where 

Ck _ 1 ~ e x p ( _ i k .  Fn)c n (83a) 

C k= 1  exp(ik.G)c, " (83b) 

e(k) = ~ V o , . e x p ( i k .  G) (84) 
n 

and 

1 (k lUlk ' )  = -N ~n Un exp[ i ( k ' -  k)" r,] (85) 

where N is the number of lattice sites. 
We are interested in calculating the electrical conductivity o(w) of this 

metal. To that end, let us introduce the charge density fluctuation operator 
do(r) and the electric current operator Jk which denotes the coupling of the 
metal to an external electromagnetic field. These operators are defined as 
follows(16-19) : The charge density fluctuation operator do(r) is given by 

I I I (86) do(r) = o(r) - }(r) = e~.  6(r - rj) - -~ 
J 

= n~ V is the mean electron density, n being the number of electrons, e is 
the electronic charge, and V the volume. In k space we have 

dpk = e~] [exp(ik �9 w - 8k,o] (87) 
J 

so that 

1 8p(r) = ~ ~ e x p ( -  ikr)dpk 
k 

(88) 
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The electric current operator Jk is given by 

8[3 k = ik.  Jk (89) 

and the coupling operator with an external electromagnetic field is (18) 

8Ok 
B k -  ik (90) 

We then have for the electric conductivity (18'~9) 

o(o~) - l imo(k ,o~)  = lim 1 k~o k~o ~ Xj.(k,,~) 
�9 O 0  

= hm ( aT((Jk(T) iJk(O)))seXp(ico'r ) (91) k-+O Jo 
In second quantization we have 

8Ok = e ~2 exp(ik G) c~c~ 
n 

and 

where 

Isk}5 = ~ 8i, k 1 tK  = -~ [ H, Spk ] = e ~] g(p)cT+k/2Ce_k/2 
P 

(92) 

(93) 

1 LIJk))s" ((JklJk))~- '  (Rj j  (k, co)) = ( (JklL ~o -- QLQ 

-= ( D(co)) + O(k  2) (95a) 

and making use of the POP equations we get 

o(k, c0) = fo ~176 dT exp(i~0~-)exp [ -- f0" dTl (T--rl)  ( ~jj (k, TI))s] '((Jk [Jk))s 

(96) 

where 

d [((jk[ L exp(-- iZT)lJkF)~((Jklexp(- iLT)lJkFF71 ] 

------/)(~') + O(k 2) (96a) 

where 

0~(p) 
g ( p ) -  ~p (94) 

Using Eqs. (91) and (93) we get, using the COP reduction scheme, 

o(k, ~o) = i 1 ~o - (Rj j  (k, ~o)), ((Jk [Jk55s (95) 
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Upon substitution of Eq. (95a) in (95) and Eq. (96a) in (96) we finally get 

oc~ = i 1 02- (D(02)) (IJ~ (97) 

oP~ fo~ d.rexp(i02,r)exp[- fo'~d, r l ( , r - , r l ) (  D('r1) ) ](lJo[2)s (98) 

We have thus to evaluate (D(02)) for the COP and (/50-)) for the POP. 
This may be done by expanding these quantities perturbatively in L'. The 
expansion of (/)(02)) is made using Eqs. (18) and (19) whereas the expan- 
sion of D(02) may be done using Eq. (34). Using Eqs. (95a) and (96a) we 
have 

(D(02)) = ((Jo[L' 1 L,[Jo))7~ (99) 02- L + ie 

( / ) (~ ) )  = ((J0l L' exp( - iL. ~-)L' [J0)~ -I (100) 

where IJo)~ is given by Eq. (93). Upon comparison of Eqs. (99) and (100) 
we note that 

1 f_~ a02(])(02))exp(- i02~) (101) 
( )_/)(z)_ = 27ri 

We should emphasize that Eq. (101) holds only in our k - ~ 0  calculation 
and in general (Rj~) is not simply the fourier transform of (~jj~. From 
Eqs. (99) and (100) we immediately have, to second order in U 

( D(02)) = X2~  f (p)  - f (P')  [(P[ U[P')[ 2 
pc" %'p 

1 q" O(~k 4) (102) •  - g(P')l 2 o2 - 02pp, + ie 

( / ) ( r ) )  = X2~ f (p )  - f (P')  I(pl uIp'512 
pp, r 

X lg(p ) - g(p')lZexp(i%,p,r) + O(~k 4) (103) 

note that/50- ) is real! 

(IJ012) ~ ( ( J o [ J o ) ) s  = e2~_ ' f (a)  - f (  fl) [ g(a)[2d., B 

df(a) (104) =-e2X  I des 
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The Anderson model of diagonal disorder implies that 

(YOU,,) = ( U2)8,,, (105) 

For this model we have 

I(PIUIP')I 2= Z U, UmeXp[i(p--P')(rn -- rm)] = ( U 2 )  (106) 
/ 'tm 

The higher-order correlation functions (U4) ,  etc. [Eqs. (81)], will enter only 
when we calculate (D(w))  to higher order in 3,. It is interesting to note that 
Eqs. (97) and (98) are in general very different although the input informa- 
tion [(D(to)) or (/)(~-))] to both is the same. The reason is that the choice 
of the reduction scheme implicitly assumes properties of the higher correla- 
tion functions ( U  4) etc. (8-1~ There is, however, one limit in which both 
results coincide. This is the Markovian limit where separation of time scales 
exists such that D(to) is very broad, i.e., we may set 

D(to) = O(0) = - i F  (107a) 

/~(~-) = F 6 ( , )  (107b) 

Using these relations in Eqs. (97) and (98) we get 

i (ij0[2> (108) o(to)coP= a(, )POp_ 

This is the Drude formula of electrical conductivity (18'19~ 

Re o ( to )  COP ~-~ Re a (to)Pop _ o:2 + r 2 (I Jot 2) (109) 
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APPENDIX A. DERIVATION OF THE COP-REM 

Suppose we have a set of operators A~, v = 1 , . . . ,  N and we are 
interested in calculating the set of correlation functions 

C~(~-) ~- ((A,(T) I A , (0 ) ) )  = Tr[A + e x p ( -  iLT)Avf ] (A.1) 

where 

L = [/4, ] (A.2) 

and f is the equilibrium distribution function which is a function of the 
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Hamiltonian H, i.e., 

so that 

We now introduce a Mori 
ordinary operator [B)) 

where 

f = f ( H )  (A.3) 

L f  = 0 (A.4) 

projection operator P by its action on an 

P]B)) = ~,, [A~))(S -')~,((A~ ]B)) (A.5) 

( S )~  = ((A. [At) ) (A.6) 

P projects onto the subspace spanned by the operators A.. We further 
define 

Q = 1 - P (A.7) 

Let us consider now the propagator 

U( t) =-- 0(t )exp(-  iLt) (a.8) 

which satisfies the equation 

(J = - iLU (A.9) 

Using Eqs. (A.5) and (A.9) we may write 

P( f  = - i P L ( P  + Q ) U =  - i P L P U -  iPLQU (A.10a) 

and 

Q(] = - iQLPU - iQLQU (A.10b) 

When solving Eq. (A.10b) for QU we get 

QU(t)  = QU(O) - i fot d ~ ' e x p [ - i Q L ( t -  I-)] QLPU(.c) (A.11) 

Upon substitution of (A. 11) in (A. 10a) and multiplying by P from the right 
we get 

P(] ( t)P = - iPLPU( t)P - fot dr PLQ exp[ - iQLQ( t - z)] QLPU('r)P 

(A.12) 

Multiplying Eq. (A.12) by A~ from the left and by A . f  from the right and 
taking a trace finally yields Eqs. (20). 
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APPENDIX B. DERIVATION OF THE POP-REM 

We use the notation introduced in Appendix A. Starting from 

U(t) = 0 (t)exp( - iLt) (B. 1) 

we have 

eU( t )e  = e e x p ( -  iLt)e (B.2) 
and 

Pl[f( t)P = - ieL exp( - iLt)P (B.3) 

Equation (B.2) can be rearranged in the form 

1 = [P  exp( -  iLt)P] - 1 e u ( t ) P  (B.4) 

Upon multiplying the right-hand side of Eqs. (B.3) and (B.4) we get 

et ) (  Oe = - ieM ( t ) eu (  t)e (B.5) 
PM ( t)P =-- ( M ( t) ) = ( P C e x p ( -  iL t )e  ) ( e e x p ( -  iLt )e  >-i (B.6) 

We now introduce the matrices ( ~ )  and (~> defined as follows: 

(M(t)) ~ <a> - ifo'd.r (~(~-)> (B.7) 

where 

(a> =- (M(O)) (B.8) 

and 

d (~(~')) ~ i ~ (M0")) (B.9) 

Using Eqs. (B.5) and (B.7) we have 

PU(t )P = - i<a>PU(t)P - fot d.c ( r  (S.10) 

Upon multiplying Eq. (B.10) by A t from the left and A ~ f  from the right 
and taking a trace we get Eqs. (26). 

APPENDIX C. RESPONSE FUNCTION FOR A CONSERVED 
VARIABLE 

Consider an operator B which is a conserved variable for which we 
have 

B~ =~ iLB~ = ikJ k (C. 1) 
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where Jk is the current associated with B k. We take our system to be 
isotropic so that kJ~ is an ordinary product and not a scalar product. 
Suppose further than we take our observable A k to be Jk- In this case, since 
B k and ark are related by the simple relation [Eq. (C.1)], we may express 
Xjs(k,~o) in terms of XBB(k,o~) or Xsj(k,~o). In this way we may evaluate 
our response function in terms of REM involving a single variable (J or B) 
instead of considering both variables. This goal is achieved as follows: 

and 

We use the relations 

IA~>> = [Jk>>-- 1 ZlBk>> 

1 <<J-hi = - -<<B-k i t#  

to write 

I < < B _ k I L G  + (~)lB_k>> <<J_k l  c + ( ,~ ) lB_k>> = -- # 

and 

(c.2) 

(C.3) 

=-I [<<B_kIB_k>>_~<<B klG+(~)lB_k>>] k 
(C.4) 

1 <<Bkl G - (_  ~o)ljk>> = # <<Bk[ G - (_o~)ZlBk> > 

1 = # [ - < < B k  Bk>> -- ~<<BklG - ( -o~) IB~>>]  

(c.5) 

Using Eqs. (52a), (C.4), and (C.5) we get 

= ~ [<<B_~IG + XJs (k,r ~ (~o)lB_k)) + <(gkla- (--~)lnk>>] 

= - ~ XBB (k, ~o) (C.6) 

We have thus expressed X.,s in terms of Xe~ (Eq. 61). 
Alternatively we may put 

- k  ij_k>> (C.7) IB-k>>-- (L- iQ 

k (C.8) <<Bkl = <<ark[ L + ie 
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resulting in 

<<J-kl G + (co)lB_~,>> = - k<<J-kl  1 1 [J-h>> 
co-  L + ic L ic 

-- tok [((J-kl  co_ L + ij k>> 

1 I s - , > > ]  
- -  < ( J - k l  _ L + i~ 

_ k [ (Gs  ~ (k, co)) - {G,~ (k ,0 ) ) ]  (C.9) 
co 

Also 

_ 1 1 IJ~>> 
<<BkIG (-co)lJk>> = -k<<Jkl  L +  iE co+ L +  i~ 

= - -~ (<<J~l 1 I J,>> 
co - c o - L - - i ~  

1 I1~>>} 
- -  < < J k l  _ L _ i c  

= - k { ( G j j ( - k , - c o ) > - ( G s j ( - k , 0 ) ) }  (C.10) 
co 

Using Eqs. (52a), (C.9), and (C.10) we get 

XJB (k, co)= k ((Gj~ (k, co)} + (Gsj ( - k , - co )>  
6O 

- (Gj~ (k ,0))  - (Gj j  ( - k , 0 ) } }  

= _ k [Xjj (k, co) - Xjj (k ,0)]  (C.11) 
co 

We have thus expressed XJB in terms of XsJ, (Eq. 62). 
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